FRAMEWORK FOR AUTHENTICATION SYSTEM BASED ON KEYSSTONE DYNAMICS FOR ONLINE BANKING

Siddhivinayak Kulkarni, Tanaya Joshi, KhushbooBiyani, Shivani Bhide
Department of Computer Engineering M.I.T College of Engineering, Pune, Maharashtra, India.

ABSTRACT:

Biometrics is used to uniquely identify an individual from a group based on certain characteristics. Biometrics plays an important role in authentication and validation systems. In this paper, we focus on the use of biometrics for Internet banking systems in order to add an extra layer of security to the existing systems. Considering scenarios where passwords can be forcefully acquired and the account can be further accessed by impostors we plan to focus on behavioral biometrics. Keystroke dynamics, which use the rhythm and manner in which an individual types characters on the keyboard or keypad, would be used as behavioral biometrics. The keystroke rhythms of a user, in terms of time would be measured to develop a unique biometric template of the user's typing pattern for future authentication. Machine learning algorithms like K-Nearest Neighbors (KNN) with multiple distance measures, Neural Networks can be used for classification of the data. Biometrics would act as a unique password for every user using which access to the user's account details can be achieved. In case of any discrepancy, alerts would be sent to the user and a second layer of authentication using physical biometrics like fingerprint could be added for further access. Besides adding an extra layer of security to one's account, the potential of such type of an authentication system in reducing and detecting frauds is immense.

Keywords: Authentication, Biometrics, Keystroke dynamics, KNN, Machine learning.

[1] INTRODUCTION

The online banking industry is growing at a phenomenal rate and will continue to do so because of easy access to banking transactions. It is imperative to increase the level of security involved in the internet banking industry since a large number of customers perform transactions online on a daily basis [17]. Internet Banking Security refers to the use of various techniques and algorithms to ensure integrity, confidentiality and availability of data. Ensuring Internet Banking security has become an onerous task due to the advanced attacking tools available with the ever-increasing number of perpetrators. It is essential to adopt new, efficient techniques to reduce the number of frauds prevalent in this domain. This paper aims at focusing on a framework which uses behavioral biometrics for authentication in online banking thereby increasing security to a great extent.

Biometrics refers to certain distinguishable characteristics which can be used to uniquely identify an individual from a group. Biometric identifiers are measurable metrics. Physical
biometric identifiers could be fingerprint, DNA, face recognition [1]. Behavioral biometric identifiers could be typing dynamics, voice recognition etc.

Keystroke dynamics, keystroke biometrics or typing dynamics, is the detailed timing information which describes exactly when each key was pressed and when it was released as a person is typing at a computer keyboard. The behavioral biometric of Keystroke Dynamics uses the manner and rhythm in which an individual types characters on a keyboard or keypad [2]. The keystroke rhythms of a user can be measured to develop a unique biometric template of the user's typing pattern for future authentication. Raw measurements available from almost every keyboard can be recorded to determine Dwell time and Flight time. The recorded keystroke timing data is then processed through a unique neural algorithm, which determines a primary pattern for future comparison. Similarly, vibration information may be used to create a pattern for future use in both identification and authentication tasks.

Data needed to analyze keystroke dynamics is obtained by keystroke logging. Normally, all that is retained when logging a typing session is the sequence of characters corresponding to the order in which keys were pressed and timing information is discarded.

Keystroke dynamics features:

1. **Flight time:**

 It is the time calculated as the difference between the time of key-press and key-release. There are four types of latencies based on the order of a press and release.
 1. Press-press (Time taken to press the first key – time taken to press the other key)
 2. Release-press (Time taken to release the first key – time taken to press the other key)
 3. Press-release (Time taken to press the first key – time taken to release the other key)
 4. Release-release (Time taken to release the first key – time taken to release the other key)

2. **Dwell time:**

 It is the time taken by the user to press and release a single key.

[2] LITERATURE REVIEW

Biometric recognition is the task of identifying an individual on the basis of his/her physiological or behavioral traits. Necessity of developing fool proof security systems has provided biometric research much needed impetus. Some of these biometric measures have shown tremendous potential in forensic applications. In this paper a review of these emerging biometric modalities is presented [1]. Kofigagbla [2] demonstrated the design and implementation of a biometric authentication scheme by means of keystroke dynamics to secure web applications. The scheme illustrates the effect of the template size and the number of biometric features used to improve performance of FAR, FRR and EER. The enrollment process is devoid of spurious outliers that may introduce significant variations to template data. Due to the dependence of the system on the user’s psychological characteristics, the adaptation module
introduces dynamism into the template features per changes in the legitimate user’s login template variants.

A new kind of dataset in which users have typed both imposed and chosen pairs of logins and passwords [3]. In addition, the keystroke dynamics samples are collected in a web-based uncontrolled environment (OS, keyboards, browser, etc.). Such kind of dataset is important since it provides us more realistic results of keystroke dynamics’ performance in comparison to the literature (controlled environment, etc.). Second, we present a statistical analysis of well-known assertions such as the relationship between performance and password size, impact of fusion schemes on system overall performance. In this paper [4], the keystroke bio metrics is used with the application in news reporting system. It will detect the person who send the news is the reporter or some other person who hacked the user name and password of the system. First the pattern of the reporter is stored with the server system. Server after receiving the text then it matches with the text pattern information in it. The main purpose of the system is to develop a secure, cheap and effective security system for securing the computer applications and data based on typing biometrics called typing patterns. An overview of keystroke dynamics and how it can work with different approaches has been detailed in the paper based on biometric authentication [5].

The paper’s [6] objective is to collect a keystroke-dynamics data set, to develop a repeatable evaluation procedure, and to measure the performance of a range of detectors so that the results can be compared soundly. Data was collected from 51 subjects typing 400 passwords each, and the system was implemented and evaluated 14 detectors from the keystroke-dynamics and pattern-recognition literature. The three top-performing detectors achieve equal-error rates between 9.6 and evaluation methodology—constitute a benchmark for comparing detectors and measuring progress. This paper [7] proposes a novel kNN type method for classification that is aimed at overcoming its shortcomings. The method constructs a kNN model for the data, which replaces the data to serve as the basis of classification. The value of k is automatically determined, is varied for different data, and is optimal in terms of classification accuracy. The construction of the model reduces the dependency on k and makes classification faster. Experiments were carried out on some public datasets collected from the UCI machine learning repository in order to test the method. Another technique of applying keystroke dynamics as a continuous process and not just for one stage verification was detailed by Bours et al. The authentication function is called for every set of keys the user presses thus making it a continuous process. Security is one of the major concerns in e-commerce, this issue has been discussed in the paper [10] related to on-line payments and how to overcome it. Statistical analysis based on both behavioral and physical biometrics have been performed [13].

In this paper [14], a new distance metric that is effective in dealing with the challenges intrinsic to keystroke dynamics data i.e. scale variations, feature interactions and redundancies, and outliers is proposed. Their keystroke biometrics algorithms based on this new distance metric are evaluated on the CMU keystroke dynamics benchmark dataset.

[3] PROPOSED METHODOLOGY
In this paper, we will focus on an authentication system for Internet Banking security. We propose to use behavioral biometrics for authentication [3]. The behavioral biometrics i.e. typing dynamics would be used to generate a password unique to each user. This number would determine the access of the user to his account and online transactions. Keystroke dynamics are recorded and stored corresponding to the user. These are then re-checked and used during further transactions. In case a variation in dynamics is encountered, alerts would be sent to the account holder as well as another person nominated by the person. Also, the transaction would be recorded and stored. Efficient implementation of this system could help in reducing internet banking frauds to a great extent. Figure 1 discusses the overall functional block diagram for proposed research.

Figure: 1. Overall functional block diagram.

3.1 Data set:

In supervised machine learning, the machine is given example inputs and their desired outputs by a teacher/supervisor i.e. it is provided with the training data set. The main aim of this technique is to map the output to the input. In our process, the system would be given data obtained from the user typing method and by extracting the values of factors like Dwell time (the time a key pressed) and Flight time (the time between "key up" and the next "key down").

3.2 Feature storage:

The training dataset given to the machine is stored. This storage data is then later accessed for comparison with the new features extracted from test data.

3.3 Feature extraction:

Features like the Dwell time (Time when a key is pressed), Flight time (Time amid key-up and next key-down), time between key-up and next key-up, time between key-down and next key-down and time between key-down and next key-up are extracted from the test input. These features, along with the stored training dataset, are then given as an input to the comparator. The comparison function evaluates the exactness between the current input and the training data set. The output from the comparator would be used to determine if the input features match the features of the account holder or not.
3.4 Comparison function:

The comparison function is given two inputs viz. the training dataset and the testing data. Different algorithms like KNN, SVM etc. can be used for classification purpose which would eventually determine if the user is to be given access to the account i.e. accepted or if the user needs to be alerted i.e. rejected. The comparison function has various components and is shown in Figure 2.

![Function Block Diagram](image)

Figure: 2. Functional block diagram of comparison function.

3.4.1 Pre-processing:

In the pre-processing phase, the features are extracted and then stored. These features include dwell time, flight time, key up-up, key down-down and key-press count.

3.4.2 Intermediate storage:

This phase consists of the temporary storage which stores the extracted features. Any new features obtained are appended to the permanent storage. Data from the intermediate storage is fed as an input to the classification algorithm used.

3.4.3 Classification algorithms:

Classification is an important data mining technique which is used to segregate data into groups based on certain attributes. Classification is a technique which comes under supervised machine learning. Machine learning, which is a sub-domain of Artificial Intelligence, refers to the construction and designing of algorithms through which a machine can learn from the data. Thus, it makes decisions or predictions based on the input data and past incidents rather than on static program instruction.

Various classification algorithms like K-Nearest Neighbors (KNN), Support Vector Machine (SVM) can be used.

3.4.3.1 K-Nearest Neighbors:
K-Nearest Neighbors (KNN) is a classification algorithm which uses supervised machine learning techniques [9]. There are two phases involved:

1. Training phase:

 The training examples consist of vectors in a multidimensional feature space, each having a class label. In the training phase of KNN, the feature vectors and class labels of the training samples are stored.

2. Classification phase:

 ‘k’ is a user-defined constant which indicates the number of neighbors. In the classification phase, an unlabeled vector i.e. a test point is classified by being assigned the most frequently occurring label among the k training samples which are nearest to the test point. [7]

 Euclidean distance is a commonly used metric for continuous variables. Euclidean distance is the straight-line distance between two points in a Euclidean space.

 Formula for calculating Euclidean Distance:

 \[d(p,q) = d(q,p) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}\]

 For text classification which uses discrete variables, another metric can be used, such as the Hamming distance.

 Formula for calculating Hamming Distance:

 \[D_H = \sum_{i=1}^{k} |x_i - y_i|\]

 \[x = y \Rightarrow D = 0\]

 \[x \neq y \Rightarrow D = 1\]

Algorithm:

1. For each training example <x, f(x)>, add the example to the list of training examples.
2. Given a query instance x_q to be classified, Let x_1, x_2, x_3, ..., x_k denote the k instances from training examples that are nearest to x_q.
3. Return the class that represents the maximum of the k instances.

1.3.6. Comparing and Indexing:

The value obtained by using the classification algorithm would give us the similarity between the test and the training data. By performing indexing on these values and choosing the value nearest/closest to the test data i.e. that value which is the most similar, we would be able to either accept or reject the test data. If the test data is rejected, the user would be alerted since it would indicate a mismatch. In case the test data is accepted, the user would be granted access to the user account.

[4] IDEA MATRIX

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>E</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase</td>
<td>Drive</td>
<td>Educate</td>
<td>Accelerate</td>
</tr>
<tr>
<td>Improve</td>
<td>Deliver</td>
<td>Eliminate</td>
<td>Avoid</td>
</tr>
<tr>
<td>Ignore</td>
<td>Decrease</td>
<td>Evaluate</td>
<td>Associate</td>
</tr>
</tbody>
</table>
Increase: Increase reliability of the security system by adding a new layer of security to detect fraud.

Improve: Improve the existing authentication system by adding a machine learning paradigm.

Ignore: Ignore the variations in the result obtained by typing dynamics depending on user state factors.

Drive: The necessity for a better security in online financial system.

Deliver: Deliver a product that satisfies the need of the industry and the clients.

Decrease: Decrease the overhead time required for authentication.

Educate: Educate the target clients about the advantages of used authentication.

Eliminate: Eliminate the threat to banking accounts by adding extra security

Evaluate: Evaluate the system performance and overhead time required.

Accelerate: Accelerate the process of verifying whether the person accessing an account is genuine.

Avoid: Avoiding all inconsistencies in stored data to provide accurate results.

Associate: Associate faster access mechanism with high fault tolerance.

[5] ADVANTAGES

- Keystroke dynamics can measure time in terms of milliseconds. At this level of accuracy it is very difficult to reproduce one person's pattern by another.
- Physical biometric systems work on a combination of hardware and software platforms. However, for keystroke dynamics only software is required for implementation. Hence, this system is inexpensive.
- The user need not be aware about the extra layer of security and can function without any interference.
- As keystroke dynamics are unique to every person, they cannot be replicated. Hence security is enhanced.

[6] DISADVANTAGES

- Typing rhythm of a person can change based on their state of mind. Hence, this system is not completely reliable.
- A lot of data needs to be stored to match the patterns of the user and define a range of different parameters.
[7] CONCLUSION AND FUTURE RESEARCH

In this paper, we have studied the use of behavioral biometrics, namely keystroke dynamics, in authentication systems related to financial services. We have studied and analyzed the classification algorithms which could be used in this system. Also, we have discussed the potential of keystroke dynamics in increasing security and thereby reducing Internet Banking frauds to a considerable extent.

The potential of the authentication system using biometrics in Internet Banking security is ever-increasing. Further research could be done to identify emotional states using keystroke dynamics. Artificial bots could be trained using the acquired data. Also, this process could be extended to other verification systems (for non-financial purposes) to enhance security and reduce frauds.

REFERENCES

[2] The BeiHang Keystroke Dynamics Authentication System (Juan Liu, Baochang Zhang, Linlin Shen, Jianzhuang Liu, Jason Zhao, University of Hong Kong, 2009)
[7] Continuous Authentication using Biometric Keystroke Dynamics (Patrick Bours and Hafez Barghouthi, NISK, 2009)
[10] Keystroke Dynamics Benchmark Dataset (Kevin Killourhy and Roy Maxion, 2009)