A NOVEL SCHEME FOR PREDICTING TYPE 2 DIABETES IN WOMEN: USING KMEANS WITH PCA AS DIMENSIONALITY REDUCTION

RATNA NITIN PATIL 1, Dr. SHARVARI CHANDRASHEKHAR TAMANE 2

1Department of Computer Engineering, Research Scholar, Babasaheb Ambedkar Marathwada University, Aurangabad, India.
2Department of Computer Engineering JNEC, Babasaheb Ambedkar Marathwada University, Aurangabad, India.

ABSTRACT:

Disease diagnosis is one of the applications where machine learning algorithms are giving successful results. Different classifiers can be used to explore patients’ data and extract a predictive model. Machine learning algorithms can provide reliable performance in determining diabetes mellitus. PIMA Indian Dataset consists of women’s records. The risk of developing diabetes in Women is quite high. Hence, the idea is to Detect and Predict this Disorder with the help of Machine Learning techniques. In this study firstly PCA is used as dimensionality reduction and then KMeans is used to cluster the data set. The prime objective of this research work is to provide a better classification of diabetes. The experimental results show the performance of this work on PIDD.

Keywords: Diabetes mellitus; early diagnosis; PCA; machine learning; clustering; KMeans.

[1] INTRODUCTION

Diabetes mellitus (DM) is a group of metabolic disorders in which there are high blood sugar levels over a prolonged period. The chronic hyperglycemia of diabetes is associated with long-term damage, dysfunction, and failure of different organs, especially the eyes, kidneys, nerves, heart, and blood vessels. Diabetes Mellitus is a metabolic disease where the person will have high blood sugar due to the pancreas unable to produce sufficient insulin or
the cells which are not responding to the insulin produced. There are three types of diabetes. They are Type 1 diabetes, Type 2 diabetes and Gestational diabetes. Type 1 diabetes mostly occurs in children. Its cause is an absolute deficiency of insulin secretion. Type 2 diabetes is called adult-onset diabetes which is common in adults. The cause of Type 2 diabetes is a combination of resistance to insulin action and an inadequate compensatory insulin secretory response. In this category, a degree of hyperglycemia is sufficient to cause pathologic and functional changes in various target tissues, but without clinical symptoms may be present for a long period of time before diabetes is detected. Gestational diabetes (GDM) has been defined as any degree of glucose intolerance with onset during pregnancy.

Diabetes is a deadly disease and a major public health challenge worldwide. The number of diabetics in India is doubled from 32 million in 2000 to 63 million in 2013 and the figure is projected to further increase to 102.2 million in the next 15 years. This is the latest assessment by the World Health Organization, raising an alarm over the need to treat the condition. The annual spend on diabetes treatment in India is pegged at Rs1.5 lakh crore, which is 4.7 times the Centre’s allocation of Rs32000 crore for health. This cost is projected to rise by 20-30% every year.

Diabetes disease diagnosis via proper interpretation of the Diabetes data is an important classification problem. There are several methodologies available on classification of diabetes disease. This work will help to develop a predictive model based on set of attributes collected from the patients to develop a mathematical model. It is essential to find a way that can help in detection with high accuracy and less complexity.

MATERIAL

A. DATASET

In the machine learning research community, a work is going on to solve the classification problem. Pima Indian Dataset (PIMA) has been used to test the classification performance by most of the scholars. It is publically available in the machine learning dataset UCI. All the instances in this dataset are Pima Indian women of at least 21 years old and living near Phoenix, Arizona, USA. The data is a collection of 768 records.

B. Risk Factors

The following are the parameters which contribute to the development of diabetes. The prevalence of Type 2 diabetes is increasing at a fast pace due to obesity, physical inactivity and unhealthy dietary habits.

Family History – The occurrence of diabetes increases with a family history of diabetes. A high incidence of diabetes is seen among the first degree relatives.

Lifestyle – Deskbound lifestyle is an independent factor for the growth of Type2 diabetes.

Obesity – There is a close association of obesity with Type2 diabetes. Increase in weight increases Body Mass Index (BMI).

Stress – The impact of physical and mental stress along with lifestyle changes has an effect of incidence of Type 2 diabetes from persons in a strong genetic background.

[2] LITERATURE REVIEW

This section discusses about the existing techniques and algorithms used for the diagnosis of diabetes mellitus. Each and every algorithm used for the diagnosis of diabetes mellitus has their own limitations and advantages. This section presents an analytical study on the features of the existing techniques.

Machine learning is an area of artificial intelligence research, which uses statistical methods for data classification. Several machine learning techniques have been applied in clinical settings to predict disease and have shown higher accuracy for diagnosis than classical methods [23]. Support vector machines (SVM) and artificial neural networks (ANN) have been widely used approaches in machine learning. They are the most frequently used supervised learning methods for analyzing complex medical data [28].

Nirmala Devi et al [29] presented a fusion model that integrates k-means clustering and k-Nearest Neighbor (KNN) with multi-step preprocessing. It is observed that KNN algorithm provides significant performance on various data sets. In this fusion model, the quality of the data is improved through eliminating noisy data thus improving the accuracy and efficiency of the KNN algorithm. K-means clustering is determines and avoids incorrectly classified instances. An efficient classification is carried out through KNN by taking the correctly clustered samples with preprocessed subset as inputs for the KNN. The finest choice of k is based on the data. The main goal of this work is to identify the value of k for PIDD for better classification accuracy using fusion based KNN. It is observed from the results that this fusion work based on KNN along with preprocessing provides best result for different k values. If k value is more, the classification accuracy of the proposed fusion framework is 97.4%. The results are also compared with simple KNN and cascaded K-MEANS and KNN for the same k values.

Literature Review on Diabetes, by National Public health: Women tend to be hardest hit by diabetes with 9.6 million women having diabetes. This represents 8.8% of the adult population of women 18 years of age and older in and a two fold increase from 1995 (4.7%). By 2050, the projected number of all persons with diabetes will have increased from 17 million to 29 million. [5]

Nahla H Barakat [1] utilized SVM for the diagnosis of diabetes. This work uses an additional intelligent module, which transforms the black box model of SVM into an intelligent SVM’s diagnostic model with adaptive results. It is observed from the results that the intelligent...
SVMs provide a potential framework for the prediction of diabetes, where a logical rule set have been generated.

Jayalakshmi and Santhakumaran (2010) proposed a new and efficient technique for the classification of diagnosis of diabetes disease using Artificial Neural Network (ANN). The methodology implemented here is based on the concept of ANN which requires a complete set of data for the accurate classification of diabetes. The paper also implements an efficient technique for the improvement of classification accuracy of missing values in the dataset. It also provides a pre-processing stage during classification.

Patil et al. (2010) implements an association-rule-based technique for the classification of type-2 diabetic patients. The methodology provides the generation of rules using apriori algorithm on the basis of some support and confidence. In the first stage, the numeric attributes are converted into categorical form which is based on the input parameters. Lastly generated the association rules which are useful to identify general associations in the data, to understand the relationship between the measured fields whether the patient goes on to develop diabetes or not.

Meng et al. [30] compared the performance of logistic regression, ANNs, and decision tree models for predicting diabetes or prediabetes using common risk factors in China population. Dilip Kumar Choubey et al., [31] have applied NBs, GA NBs method on PIMA dataset. The classification has been done by using NBs and then using GA for Attributes selection and there by performed classification on the selected attributes. The proposed method minimizes the computation cost, computation time and maximizes the ROC and classification accuracy than several other existing methods.

M. Kothainayaki, P. Thangaraj [32] presented the Classification of diabetic’s data set and the k-means algorithm to categorical domains. Before classification the preprocessing of data set is done to remove the noise in the data set. They have used the missing value algorithm to replace the null values in the data set. This algorithm is also used to improve the classification rate and cluster the data set using two attributes namely plasma and pregnancy attribute.

[3] ALGORITHMS USED

[3.1] Principal component analysis (PCA)

PCA is used abundantly in all forms of analysis - from neuroscience to computer graphics, because it is a simple, non-parametric method of extracting relevant information from confusing data sets. With minimal additional effort PCA provides a roadmap for how to reduce a complex data set to a lower dimension to reveal the sometimes hidden, simplified dynamics that often underlie it.

Principal Component Analysis (PCA) is an unsupervised dimensionality reduction method; it is also named the discrete Karhunen–Loève transform (KLT). Principal components analysis is a technique that can be used to simplify a dataset. It is a linear transformation that chooses a new coordinate system for the data set such that greatest variance by any projection of the dataset comes to lie on the first axis (then called the first principal component), the second greatest variance on the second axis, and so on. PCA can be used for reducing dimensionality by eliminating the later principal components [34].
A NOVEL SCHEME FOR PREDICTING TYPE 2 DIABETES IN WOMEN: USING KMEANS WITH PCA AS DIMENSIONALITY REDUCTION

By finding the eigenvalues and eigenvectors of the covariance matrix, we find that the eigenvectors with the largest eigenvalues correspond to the dimensions that have the strongest correlation in the dataset. This is the principal component.

Listed below are the 6 general steps for performing a principal component analysis,

1. Take the whole dataset consisting of d-dimensional samples ignoring the class labels
2. Compute the d-dimensional mean vector (i.e., the means for every dimension of the whole dataset)
3. Compute the scatter matrix (alternatively, the covariance matrix) of the whole data set
4. Compute eigenvectors \((e_1, e_2, \ldots, e_d)\) and corresponding eigenvalues \((\lambda_1, \lambda_2, \ldots, \lambda_d)\) of the covariance matrix
 \[
 C = \lambda_1 > \lambda_2 > \cdots > \lambda_N \text{ (eigenvalues)}
 \]
 \[
 C = e_1, e_2, \ldots, e_d \text{ (eigenvectors)}
 \]
5. Sort the eigenvectors by decreasing eigenvalues and choose \(k\) eigenvectors with the largest eigenvalues to form a \(d \times k\) dimensional matrix \(W\) (where every column represents an eigenvector)
6. Use this \(d \times k\) eigenvector matrix to transform the samples onto the new subspace. This can be summarized by the mathematical equation:
 \[
 y = W^T \times x
 \]
 where \(x\) is a \(d \times 1\)-dimensional vector representing one sample, and \(y\) is the transformed \(k \times 1\)-dimensional sample in the new subspace.

PCA is a useful statistical technique that has found application in:
- Fields such as face recognition and image compression
- Finding patterns in data of high dimension [35].

[3.2] KMeans Clustering

KMeans is one of the simplest unsupervised learning algorithms that solve the well-known clustering problem. The procedure follows a simple and easy way to classify a given data set through a certain number of clusters (assume \(k\) clusters) fixed Apriori. The main idea is to define \(k\) centers, one for each cluster. These centers should be placed in a calculating way because of different location causes different result. So, the better choice is to place them as much as possible far away from each other. The next step is to take each point belonging to a given data set and associate it to the nearest center. When no point is pending, the first step is completed. At this point we need to re-calculate \(k\) new centroids as barycenter of the clusters resulting from the previous step. After we have these \(k\) new centroids, a new binding has to be done between the same data set points and the nearest new center. A loop has been generated. As a result of this loop we may notice that the \(k\) centers change their location step by step until no more changes are done or in other words centers do not move any more. Finally, this algorithm aims at minimizing an objective function known as squared error function given by:

\[
J(C) = \frac{1}{2} \sum_{i=1}^{c} \sum_{j=1}^{c} ||x_i - v_j||^2
\]

Where,

\(||x_i - v_j||\) is the Euclidean distance between \(x_i\) and \(v_j\)
‘c’ is the number of cluster centers.

Algorithmic steps for k-means clustering

Let \(X = \{x_1, x_2, x_3, \ldots, x_n\} \) be the set of data points and \(V = \{v_1, v_2, \ldots, v_c\} \) be the set of centers.
1) Randomly select ‘c’ cluster centers.
2) Calculate the distance between each data point and cluster centers.
3) Assign the data point to the cluster center whose distance from the cluster center is minimum of all the cluster centers.
4) Recalculate the new cluster center using:

\[
v_i = \left(\frac{1}{c_i}\right) \sum_{j=1}^{c_i} x_j
\]

Where, ‘\(c_i \)’ represents the number of data points in \(i^{th} \) cluster.
5) Recalculate the distance between each data point and new obtained cluster centers.
6) If no data point was reassigned then stop, otherwise repeat from step (3).

[4] PROPOSED METHODOLOGY

In this paper, the proposed methodology is implemented by PCA as a Dimension Reduction and KMeans for Clustering on PIMA which has been taken from UCI machine learning repository. The flow of process is as follows:
1. The PIDD has been taken from UCI machine learning repository.
2. Preprocessing
3. Apply PCA as Dimension Reduction on PIMA.
4. Do the Grouping by using KMeans.

Flowchart:

```
  PIMA Indian Diabetes Dataset
   ↓
  Preprocessing
   ↓
  Principal Component Analysis
   ↓
  KMeans clustering Algorithm
   ↓
  Formation of clusters as Diabetic and Nondiabetic
```
A NOVEL SCHEME FOR PREDICTING TYPE 2 DIABETES IN WOMEN: USING KMEANS WITH PCA AS DIMENSIONALITY REDUCTION

[5] EXPERIMENTAL RESULTS

The data set is classified using the algorithm and attain the result as tested_positive or tested_negative.

Some notations used for performance measure:

TP – True Positives (Samples the classifier has correctly classified as positives)
TN – True Negatives (Samples the classifier has correctly classified as negatives)
FP – False Positives (Samples the classifier has incorrectly classified as positives)
FN – False Negatives (Samples the classifier has incorrectly classified as negatives)

Then calculate the classification rate using followings formulas:

Precision: Proportion of all positive predictions that are correct. Precision is a measure of how many positive predictions were actual positive observations.

\[
\text{Precision} = \frac{TP}{TP + FP}
\]

Recall: Proportion of all real positive observations that are correct. Precision is a measure of how many actual positive observations were predicted correctly.

\[
\text{Recall} = \frac{TP}{TP + FN}
\]

F1 Score: The harmonic mean of precision and recall. F1 score is an 'average' of both precision and recall. We use the harmonic mean because it is the appropriate way to average ratios (while arithmetic mean is appropriate when it conceptually makes sense to add things up).

\[
\text{F1 Score} = \frac{2 \times \text{Recall} \times \text{Precision}}{\text{Recall} + \text{Precision}}
\]

PCA is applied on the dataset and the scatter graph is plotted for known outcomes.

The output from the PCA is given to KMeans clustering algorithm. The scatter graph showing the dataset into 2 clusters.
The primary use of clustering algorithms is to discover the grouping structures inherent in data. The advantage of this approach is the structures of constructed data sets can be controlled. The confusion matrix is obtained using SCIKIT.

The confusion matrix using without PCA

<table>
<thead>
<tr>
<th></th>
<th>Cluster1</th>
<th>Cluster2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tested_negative</td>
<td>421</td>
<td>79</td>
</tr>
<tr>
<td>Tested_positive</td>
<td>182</td>
<td>86</td>
</tr>
</tbody>
</table>

The accuracy score is 0.66015625.

In Y, Target outcome is stored And in kmeans.labels_ predicted class value is stored

```python
>>> print(accuracy_score(Y, kmeans.labels_))
0.66015625
>>> print(confusion_matrix(Y, kmeans.labels_))

[[421  79]
 [182  86]]
```

```python
>>> print(classification_report(Y, x))

precision    recall  f1-score  support
0.0 0.70      0.84      0.76       500
1.0 0.52      0.32      0.40       268
avg / total 0.64      0.66      0.64       768
```

The confusion matrix after preprocessing & PCA

<table>
<thead>
<tr>
<th></th>
<th>Cluster1</th>
<th>Cluster2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tested_negative</td>
<td>257</td>
<td>104</td>
</tr>
<tr>
<td>Tested_positive</td>
<td>45</td>
<td>136</td>
</tr>
</tbody>
</table>

The accuracy score is 0.725092250923
A NOVEL SCHEME FOR PREDICTING TYPE 2 DIABETES IN WOMEN: USING KMEANS WITH PCA AS DIMENSIONALITY REDUCTION

>>> print (accuracy_score(Y, x))
0.725092250923

>>> print (confusion_matrix(Y, x))
[[257 104]
 [45 136]]

>>> print (classification_report(Y, x))

precision recall f1-score support

 0.0 0.85 0.71 0.78 361
 1.0 0.57 0.75 0.65 181

avg / total 0.76 0.73 0.73 542

[6] CONCLUSION AND FUTURE SCOPE

The proposed method yields better results than single classifier. In this paper we have proposed KMeans clustering algorithm which first implements the dimensionality reduction technique i.e., PCA and then uses KMeans algorithm to fine tune the result. Using the proposed method a given dataset is partitioned in such a way that the sum of total clustering error is reduced to a large extent. The limitation of this work is that it may not provide the same accuracy for any other data set which it has provided for the Pima Indian diabetic data set in this approach. This study can be further extended to deal datasets with multiple classes.

REFERENCES

A NOVEL SCHEME FOR PREDICTING TYPE 2 DIABETES IN WOMEN: USING KMEANS WITH PCA AS DIMENSIONALITY REDUCTION

[34] Y. pang, Y. Yuan, and X. Li. Effective feature extraction in high dimensional space, IEEE Trans. Syst., Man, Cybern. B, Cybe

Author[s] brief Introduction

Ratna Nitin Patil has obtained her Masters in Computer Engineering from Thapar Institute, Patiala, Punjab in 2001. She is pursuing PhD from Babasaheb Ambedkar Marathwada University, Aurangabad, India. She has worked as an Associate Professor at Kanpur Institute of Technology, Kanpur, St Peters College of Engineering, Chennai, Srim College of Engineering, Chennai, Mar Baselios College of Engineering, Trivandrum and at Vishwakarma Institute of Technology, Pune. She has 22 years of teaching experience. Her research interest includes Machine Learning, Natural Language Processing and Analysis of Algorithms.
Email:ratna.patil@vit.edu

Dr. Sharavari Chandrashekhar Tamane has obtained her PhD in Computer Science and Engineering from Babasaheb Ambedkar Marathwada University, Aurangabad, India. She has 15 international publications. She is working as an associate professor in Jawaharlal Nehru Engineering College, Aurangabad. She is designated as a chairperson of Second International Conference on Internet of Things, Data and Cloud Computing.

Ratna Nitin Patil and Dr Sharvari Chandrashekhar Tamane
(ICC’17), Cambridge university, United Kingdom Her research area includes Cloud Computing, Analysis of Algorithms and Network Security.
Email: sharvaree73@yahoo.com